在 C++ 中查詢 BST 的中位數,時間複雜度為 O(n),空間複雜度為 O(1)
概念
對於給定的二叉搜尋樹 (BST),我們的任務是確定它的中位數。
對於偶數個節點,中位數 = ((n/2 個節點 + (n+1)/2 個節點) /2 對於奇數個節點,中位數 = (n+1)/2 個節點。
對於給定的 BST(具有奇數個節點)為 -
7 / \ 4 9 / \ / \ 2 5 8 10
給定 BST 的中序遍歷將是:2、4、5、7、8、9、10 因此,這裡的中位數將是 7。
對於給定的 BST(具有偶數個節點)為 -
7 / \ 4 9 / \ / 2 5 8
給定 BST 的中序遍歷將是 - 2、4、5、7、8、9
因此,這裡的中位數將是 (5+7)/2 = 6。
方法
為了確定中位數,我們需要確定 BST 的中序遍歷,因為它的中序遍歷將按排序順序排列,然後確定中位數。在這裡,這個概念基於使用 O(1) 額外空間的 BST 中第 K 個最小元素。現在,如果允許我們實現額外的空間,那麼任務非常簡單,但中序遍歷實現遞迴和棧都使用空間,這裡不允許。
因此,解決方案是執行 Morris 中序遍歷,因為它不需要任何額外空間。
Morris 中序遍歷的解釋如下 -
- 我們將 current 初始化為根節點
- 當 current 不為 NULL 時
如果 current 沒有左子節點
- 列印 current 的資料
- 移到右側,即 current = current->right
否則
- 將 current 構造為 current 的左子樹中最右側節點的右子節點
- 移到這個左子節點,即 current = current->left
最終實現以以下方式討論 -
我們使用 Morris 中序遍歷計算給定 BST 中的節點數。
之後,再次執行 Morris 中序遍歷,同時計算節點數並驗證計數是否等於中位數點。
為了考慮偶數個節點,實現了一個額外的指標指向前一個節點。
示例
/* C++ program to find the median of BST in O(n) time and O(1)
space*/
#include<bits/stdc++.h>
using namespace std;
/* Implements a binary search tree Node1 which has data, pointer
to left child and a pointer to right child */
struct Node1{
int data1;
struct Node1* left1, *right1;
};
//Shows a utility function to create a new BST node
struct Node1 *newNode(int item1){
struct Node1 *temp1 = new Node1;
temp1->data1 = item1;
temp1->left1 = temp1->right1 = NULL;
return temp1;
}
/* Shows a utility function to insert a new node with
given key in BST */
struct Node1* insert(struct Node1* node1, int key1){
/* It has been seen that if the tree is empty, return a new node
*/
if (node1 == NULL) return newNode(key1);
/* Else, recur down the tree */
if (key1 < node1->data1)
node1->left1 = insert(node1->left1, key1);
else if (key1 > node1->data1)
node1->right1 = insert(node1->right1, key1);
/* return the (unchanged) node pointer */
return node1;
}
/* Shows function to count nodes in a binary search tree
using Morris Inorder traversal*/
int counNodes(struct Node1 *root1){
struct Node1 *current1, *pre1;
// Used to initialise count of nodes as 0
int count1 = 0;
if (root1 == NULL)
return count1;
current1 = root1;
while (current1 != NULL){
if (current1->left1 == NULL){
// Now count node if its left is NULL
count1++;
// Go to its right
current1 = current1->right1;
} else {
/* Determine the inorder predecessor of current */
pre1 = current1->left1;
while (pre1->right1 != NULL &&
pre1->right1 != current1)
pre1 = pre1->right1;
/* Construct current1 as right child of its inorder predecessor */
if(pre1->right1 == NULL){
pre1->right1 = current1;
current1 = current1->left1;
}
/* we have to revert the changes made in if part to restore the original tree i.e., fix the right child of predecssor */
else {
pre1->right1 = NULL;
// Now increment count if the current
// node is to be visited
count1++;
current1 = current1->right1;
} /* End of if condition pre1->right1 == NULL */
} /* End of if condition current1->left1 == NULL*/
} /* End of while */
return count1;
}
/* Shows function to find median in O(n) time and O(1) space
using Morris Inorder traversal*/
int findMedian(struct Node1 *root1){
if (root1 == NULL)
return 0;
int count1 = counNodes(root1);
int currCount1 = 0;
struct Node1 *current1 = root1, *pre1, *prev1;
while (current1 != NULL){
if (current1->left1 == NULL){
// Now count current node
currCount1++;
// Verify if current node is the median
// Odd case
if (count1 % 2 != 0 && currCount1 == (count1+1)/2)
return prev1->data1;
// Even case
else if (count1 % 2 == 0 && currCount1 == (count1/2)+1)
return (prev1->data1 + current1->data1)/2;
// Now update prev1 for even no. of nodes
prev1 = current1;
//Go to the right
current1 = current1->right1;
} else {
/* determine the inorder predecessor of current1 */
pre1 = current1->left1;
while (pre1->right1 != NULL && pre1->right1 != current1)
pre1 = pre1->right1;
/* Construct current1 as right child of its inorder
predecessor */
if (pre1->right1 == NULL){
pre1->right1 = current1;
current1 = current1->left1;
}
/* We have to revert the changes made in if part to restore the original
tree i.e., fix the right child of predecssor */
else {
pre1->right1 = NULL;
prev1 = pre1;
// Now count current node
currCount1++;
// Verify if the current node is the median
if (count1 % 2 != 0 && currCount1 == (count1+1)/2 )
return current1->data1;
else if (count1%2==0 && currCount1 == (count1/2)+1)
return (prev1->data1+current1->data1)/2;
// Now update prev1 node for the case of even
// no. of nodes
prev1 = current1;
current1 = current1->right1;
} /* End of if condition pre1->right1 == NULL */
} /* End of if condition current1->left1 == NULL*/
} /* End of while */
}
/* Driver program to test above functions*/
int main(){
/* Let us create following BST
7
/ \
4 9
/ \ / \
2 5 8 10 */
struct Node1 *root1 = NULL;
root1 = insert(root1, 7);
insert(root1, 4);
insert(root1, 2);
insert(root1, 5);
insert(root1, 9);
insert(root1, 8);
insert(root1, 10);
cout << "\nMedian of BST is(for odd no. of nodes) "<< findMedian(root1) <<endl;
/* Let us create following BST
7
/ \
4 9
/ \ /
2 5 8
*/
struct Node1 *root2 = NULL;
root2 = insert(root2, 7);
insert(root2, 4);
insert(root2, 2);
insert(root2, 5);
insert(root2, 9);
insert(root2, 8);
cout << "\nMedian of BST is(for even no. of nodes) "
<< findMedian(root2);
return 0;
}輸出
Median of BST is(for odd no. of nodes) 7 Median of BST is(for even no. of nodes) 6
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP