在NumPy中按元素劃分引數並以不同型別顯示結果
要按元素劃分引數,請在Python NumPy中使用**numpy.divide()**方法。arr1被視為被除數陣列。arr2被視為除數陣列。使用“**dtype**”引數將輸出設定為“**float**”。
out是將結果儲存到的位置。如果提供,則其形狀必須與輸入廣播到的形狀相同。如果不提供或為None,則返回一個新分配的陣列。元組(僅可能作為關鍵字引數)的長度必須等於輸出的數量。
NumPy 提供了全面的數學函式、隨機數生成器、線性代數例程、傅立葉變換等等。它支援廣泛的硬體和計算平臺,並且與分散式、GPU和稀疏陣列庫配合良好。
步驟
首先,匯入所需的庫:
import numpy as np
建立兩個二維陣列:
arr1 = np.array([[14, 28, 56], [84, 56, 112]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]])
顯示陣列:
print("Array 1...
", arr1) print("
Array 2...
", arr2)
獲取陣列的型別:
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
獲取陣列的維度:
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
獲取陣列的形狀:
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
要按元素劃分引數,請在Python NumPy中使用numpy.divide()方法。arr1被視為被除數陣列。arr2被視為除數陣列。使用“dtype”引數將輸出設定為“float”。
print("
Result (divide element-wise)...
",np.divide(arr1, arr2, dtype = 'float'))
示例
import numpy as np # Create two 2D arrays arr1 = np.array([[14, 28, 56], [84, 56, 112]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To divide arguments element-wise, use the numpy.divide() method in Python Numpy # The arr1 is considered Dividend array # The arr2 is considered Divisor array # The output is set "float" using the "dtype" parameter print("
Result (divide element-wise)...
",np.divide(arr1, arr2, dtype = 'float'))
輸出
Array 1... [[ 14 28 56] [ 84 56 112]] Array 2... [[ 7 14 21] [28 35 56]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result (divide element-wise)... [[2. 2. 2.66666667] [3. 1.6 2. ]]
廣告