C++程式:求所有給定三元組的最短成本路徑之和
假設有n個城市和m條連線這些城市的道路。這m條道路在一個名為roads的陣列中給出,格式為{起點城市,終點城市,權重}。現在定義一個三元組(s, t, k),其中s、t和k都是城市。現在需要計算從城市s到城市t的最小時間。從s到t的訪問只能經過1到k的城市。如果城市t從s不可達,則返回0。需要計算所有三元組(s, t, k)的最小時間,並輸出它們的總和。
例如,如果輸入為n = 4,m = 2,edges = {{1, 2, 5}, {2, 3, 4}, {3, 4, 3}},則輸出為63。
步驟
為了解決這個問題,我們將遵循以下步驟:
Define one 2D array dvec initialized with value infinity for initialize i := 0, when i < n, update (increase i by 1), do: dvec[i, i] := 0 for initialize i := 0, when i < m, update (increase i by 1), do: a := first value of (edges[i]) b := second value of (edges[i]) c := third value of (edges[i]) decrease a and b by 1 dvec[a, b] := c res := 0 for initialize k := 0, when k < n, update (increase k by 1), do: for initialize i := 0, when i < n, update (increase i by 1), do: for initialize j := 0, when j < n, update (increase j by 1), do: dvec[i, j] := minimum of (dvec[i, j] and dvec[i, k] + dvec[k, j]) if dvec[i, j] is not equal to infinity, then: res := res + dvec[i, j] print(res)
示例
讓我們看下面的實現來更好地理解:
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; void solve(int n, int m, vector<tuple<int, int, int>> edges){ vector<vector<int>> dvec(n, vector<int>(n, INF)); for(int i = 0; i < n; i++) dvec[i][i] = 0; for(int i = 0; i < m; i++) { int a = get<0> (edges[i]); int b = get<1> (edges[i]); int c = get<2> (edges[i]); a--; b--; dvec[a][b] = c; } int res = 0; for(int k = 0; k < n; k++) { for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { dvec[i][j] = min(dvec[i][j], dvec[i][k]+dvec[k][j]); if(dvec[i][j] != INF) res += dvec[i][j]; } } } cout << res << endl; } int main() { int n = 4, m = 2; vector<tuple<int, int, int>> edges = {{1, 2, 5}, {2, 3, 4}, {3, 4, 3}}; solve(n, m, edges); return 0; }
輸入
4, 2, {{1, 2, 5}, {2, 3, 4}, {3, 4, 3}}
輸出
63
廣告