C++程式,用於找出銷售小麥所能獲得的最大利潤
假設有n個城市,由m條道路連線。道路是單向的,道路只能從起點到終點,反之則不行。道路以陣列'roads'的形式給出,格式為{起點,終點}。現在,這些城市裡的小麥以不同的價格出售。各個城市的小麥價格在一個數組'price'中給出,其中第i個值是第i個城市的小麥價格。現在,旅行者可以從任何城市購買小麥,併到達任何城市(如果允許)出售。我們必須找出旅行者透過交易小麥所能獲得的最大利潤。
因此,如果輸入類似於n = 5,m = 3,price = {4, 6, 7, 8, 5},roads = {{1, 2}, {2, 3}, {2, 4}, {4, 5}},則輸出將為4。
如果旅行者在第一個城市購買小麥並在第四個城市出售,則獲得的總利潤為4。
步驟
為了解決這個問題,我們將遵循以下步驟:
Define one 2D array graph of size nxn. for initialize i := 0, when i < m, update (increase i by 1), do: x := first value of roads[i] y := second value of roads[i] decrease x, y by 1 insert y at the end of graph[x] Define an array tp of size n initialized with value negative infinity. for initialize i := 0, when i < n, update (increase i by 1), do: for each value u in graph[i], do: tp[u] := minimum of ({tp[u], tp[i], price[i]}) res := negative infinity for initialize i := 0, when i < n, update (increase i by 1), do: res := maximum of (res and price[i] - tp[i]) return res
示例
讓我們看看以下實現以獲得更好的理解:
#include <bits/stdc++.h> using namespace std; int solve(int n, int m, vector<int> price, vector<pair<int, int>> roads){ vector<vector<int>> graph(n); for(int i = 0; i < m; i++){ int x, y; x = roads[i].first; y = roads[i].second; x--, y--; graph[x].push_back(y); } vector<int> tp(n, int(INFINITY)); for(int i = 0; i < n; i++){ for(int u : graph[i]){ tp[u] = min({tp[u], tp[i], price[i]}); } } int res = -int(INFINITY); for(int i = 0; i < n; i++){ res = max(res, price[i] - tp[i]); } return res; } int main() { int n = 5, m = 3; vector <int> price = {4, 6, 7, 8, 5}; vector<pair<int, int>> roads = {{1, 2}, {2, 3}, {2, 4}, {4, 5}}; cout<< solve(n, m, price, roads); return 0; }
輸入
5, 3, {4, 6, 7, 8, 5}, {{1, 2}, {2, 3}, {2, 4}, {4, 5}}
輸出
4
廣告