在Python中計算x1/x2的逐元素反正切,並正確選擇象限
選擇象限的方法是,arctan2(x1, x2) 是以原點為起點,經過點(1,0)的射線與以原點為起點,經過點(x2, x1)的射線之間所成的有符號弧度角。
第一個引數是y座標,第二個引數是x座標。如果x1.shape != x2.shape,則它們必須可廣播到一個共同的形狀。該方法返回一個弧度角陣列,範圍在[-pi, pi]。如果x1和x2都是標量,則返回標量。
步驟
首先,匯入所需的庫:
import numpy as np
使用array()方法建立陣列。這些是不同象限的四個點:
x = np.array([-1, +1, +1, -1]) y = np.array([-1, -1, +1, +1])
顯示array1:
print("Array1 (x coordinates)...\n", x)
顯示array2:
print("\nArray2 (y coordinates)...\n", y)為了計算x1/x2的逐元素反正切並正確選擇象限,請在Python中使用numpy的arctan2()方法:
print("\nResult...",np.arctan2(y, x) * 180 / np.pi)
示例
import numpy as np
# The quadrant is chosen so that arctan2(x1, x2) is the signed angle in radians between the ray
# ending at the origin and passing through the point (1,0), and the ray ending at the origin and
# passing through the point (x2, x1).
# Creating arrays using the array() method
# These are four points in different quadrants
x = np.array([-1, +1, +1, -1])
y = np.array([-1, -1, +1, +1])
# Display the array1
print("Array1 (x coordinates)...\n", x)
# Display the array2
print("\nArray2 (y coordinates)...\n", y)
# To compute element-wise arc tangent of x1/x2 choosing the quadrant correctly, use the numpy, arctan2() method in Python
print("\nResult...",np.arctan2(y, x) * 180 / np.pi)輸出
Array1 (x coordinates)... [-1 1 1 -1] Array2 (y coordinates)... [-1 -1 1 1] Result... [-135. -45. 45. 135.]
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP