兩個排序陣列的中值


中值是中間數,換句話說,中值是已排序列表中的中間觀測值。它對應於 50% 的累積百分比。

兩個陣列的大小必須相等,我們首先將找到兩個單獨陣列的中值,然後比較單獨的中值以獲得兩個列表的實際中值。

輸入和輸出

Input:
Two sorted array are given.
Array 1: {1, 2, 3, 6, 7}
Array 2: {4, 6, 8, 10, 11}
Output:
The median from two array. Here the median value is 6.
Merge the given lists into one. {1, 2, 3, 4, 6, 6, 7, 8, 10, 11}
From the merged list find the average of two middle elements. here (6+6)/2 = 6.

演算法

median(list, n)

輸入:資料列表及資料數量。

輸出:給定列表的中值。

Begin
   if the list has even number of data, then
      return (list[n/2] + list[n/2-1])/2
   else
      return list[n/2]
End

findMedian(list1, list2, n)

輸入 − 兩個排序列表以及列表數。

輸出 − 兩個排序列表中的中值。

Begin
   if n <= 0, then
      it is invalid, and return invalid number
   if n = 1, then
      return (list1[0] + list2[0])/2
   if n = 2, then
      return ((max of list1[0], list2[0]) + (min of list1[1], list2[1]))/2
   med1 := median(list1, n)
   med2 := median(list2, n)

   if med1 = med2, then
      return med1
   if med1 < med2, then
      if item has even number of data, then
         subList := data from list2, from 0 to n/2 – 1 data
         return findMedian(subList, list1, n – (n/2) + 1)
      subList := data from list2, from 0 to n/2 data
      return findMedian(subList, list2, n – (n/2))
End

示例

#include<iostream>
using namespace std;

int median(int list[], int n) {
   if (n%2 == 0)     //when array containts even number of data
      return (list[n/2] + list[n/2-1])/2;
   else        //for odd number of data
      return list[n/2];
}

intfindMedian(int list1[], int list2[], int n) {
   if (n <= 0)
      return -1;      //invalid length of lists
   if (n == 1)
      return (list1[0] + list2[0])/2;    //for single element simply get average from two array
   if (n == 2)
      return (max(list1[0], list2[0]) + min(list1[1], list2[1])) / 2;

   int med1 = median(list1, n);     //Find median from first array
   int med2 = median(list2, n);     //Find median from second array

   if (med1 == med2)    //when both medians are same, they are the final median
       return med1;
   if (med1 < med2) {
       if (n % 2 == 0)
          return findMedian(list1 + n/2 - 1, list2, n - n/2 +1);
       return findMedian(list1 + n/2, list2, n - n/2);
   }

   if (n % 2 == 0)    //when med1 > med2
      return findMedian(list2 + n/2 - 1, list1, n - n/2 + 1);
   return findMedian(list2 + n/2, list1, n - n/2);
}

int main() {
   int list1[] = {1, 2, 3, 6, 7};
   int list2[] = {4, 6, 8, 10, 11};

   int n1 = 5;
   int n2 = 5;

   if (n1 == n2)
      cout<< "Median is "<<findMedian(list1, list2, n1);
   else
      cout<< "Doesn't work for lists of unequal size";
}

輸出

Median is 6

更新於: 16-Jun-2020

534 瀏覽量

開始職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.