在 CSS3 中設定列規則
要設定列規則,可以使用速記的列規則屬性,可以在其中設定以下屬性:
column-rule-width: set the width of the rule between columns column-rule-style: set the style of the rule between columns column-rule-color: set the rule of the rule between columns
列規則的值可以設定為:
column-rule: column-rule-width column-rule-style column-rule-color|initial|inherit; column-rule: column-rule-width column-rule-style column-rule-color|initial|inherit;
另外,這些屬性可以分開使用。我們來看看這兩個示例。
列規則速記屬性
在此示例中,我們使用速記屬性設定了列規則:
column-rule: 5px dotted orange;
以上示例將設定規則寬度為 5px、樣式為點線、顏色為橙色。
示例
現在我們來看一個示例:
<!DOCTYPE html> <html> <head> <style> .demo { column-count: 5; -webkit-column-count: 5; /* Chrome, Safari, Opera */ -moz-column-count: 5; /* Firefox */ -webkit-column-gap: normal; /* Chrome, Safari, Opera */ -moz-column-gap: normal; /* Firefox */ column-gap: normal; -webkit-column-rule: 5px dotted orange; /* Chrome, Safari, Opera */ -moz-column-rule: 5px dotted orange; /* Firefox */ column-rule: 5px dotted orange; } </style> </head> <body> <h1>PyTorch</h1> <div class="demo"> PyTorch is defined as an open source machine learning library for Python. It is used for applications such as natural language processing. It is initially developed by Facebook artificial-intelligence research group, and Uber’s Pyro software for probabilistic programming which is built on it. Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT based on Torch framework. There are two PyTorch variants. PyTorch redesigns and implements Torch in Python while sharing the same core C libraries for the backend code. PyTorch developers tuned this back-end code to run Python efficiently. They also kept the GPU based hardware acceleration as well as the extensibility features that made Lua-based Torch. </div> </body> </html>
設定列規則
我們來看一個使用所有屬性的示例,這些屬性用於將列規則置於速記屬性的位置。這將設定列規則寬度、顏色和樣式:
column-rule-width: 5px; column-rule-color: blue; column-rule-style: double;
示例
示例:
<!DOCTYPE html> <html> <head> <style> .demo { column-count: 4; -webkit-column-count: 4; /* Chrome, Safari, Opera */ -moz-column-count: 4; /* Firefox */ -webkit-column-gap: normal; /* Chrome, Safari, Opera */ -moz-column-gap: normal; /* Firefox */ column-gap: normal; -webkit-column-rule-width: 5px; /* Chrome, Safari, Opera */ -moz-column-rule-width: 5px; /* Firefox */ column-rule-width: 5px; -webkit-column-rule-color: blue; /* Chrome, Safari, Opera */ -moz-column-rule-color: blue; /* Firefox */ column-rule-color: blue; -webkit-column-rule-style: double; /* Chrome, Safari, Opera */ -moz-column-rule-style: double; /* Firefox */ column-rule-style: double; } </style> </head> <body> <h1>PyTorch</h1> <div class="demo"> PyTorch is defined as an open source machine learning library for Python. It is used for applications such as natural language processing. It is initially developed by Facebook artificial-intelligence research group, and Uber’s Pyro software for probabilistic programming which is built on it. Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT based on Torch framework. There are two PyTorch variants. PyTorch redesigns and implements Torch in Python while sharing the same core C libraries for the backend code. PyTorch developers tuned this back-end code to run Python efficiently. They also kept the GPU based hardware acceleration as well as the extensibility features that made Lua-based Torch. </div> </body> </html>
廣告