Numpy中多維陣列的降維以及沿負軸相加


要對多維陣列進行降維,可以使用Python Numpy中的**np.ufunc.reduce()**方法。這裡我們使用**multiply.reduce()**將其降維為元素的乘積。“**axis**”引數用於設定軸。軸是執行降維的軸。負軸從最後一個軸到第一個軸進行計數。

通用函式(簡稱ufunc)是在逐元素的基礎上對ndarray進行運算的函式,支援陣列廣播、型別轉換以及其他一些標準特性。也就是說,ufunc是對一個函式的“向量化”封裝,該函式接受固定數量的特定輸入併產生固定數量的特定輸出。

步驟

首先,匯入所需的庫:

import numpy as np

建立一個多維陣列:

arr = np.arange(27).reshape((3,3,3))

顯示陣列:

print("Array...
", arr)

獲取陣列的型別:

print("
Our Array type...
", arr.dtype)

獲取陣列的維度:

print("
Our Array Dimensions...
",arr.ndim)

要對多維陣列進行降維,可以使用Python Numpy中的np.ufunc.reduce()方法。這裡我們使用multiply.reduce()將其降維為元素的乘積。“axis”引數用於設定軸。軸是執行降維的軸。負軸從最後一個軸到第一個軸進行計數:

print("
Result along specific axis (multiplication)...
",np.multiply.reduce(arr, axis = -1))

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility

# Create a multi-dimensional array
arr = np.arange(27).reshape((3,3,3))

# Display the array
print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # To reduce a multi-dimensional array, use the np.ufunc.reduce() method in Python Numpy # Here, we have used multiply.reduce() to reduce it to the multiplication of elements # The axis is set using the "axis" parameter # Axis or axes along which a reduction is performed # The negative axis counts from the last to the first axis print("
Result along specific axis (multiplication)...
",np.multiply.reduce(arr, axis = -1))

輸出

Array...
[[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]]

[[ 9 10 11]
[12 13 14]
[15 16 17]]

[[18 19 20]
[21 22 23]
[24 25 26]]]

Our Array type...
int64

Our Array Dimensions...
3

Result along specific axis (multiplication)...
[[ 0 60 336]
[ 990 2184 4080]
[ 6840 10626 15600]]

更新於:2022年2月7日

111 次檢視

開啟您的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.