求下列各式的積:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
已知
已知項為:
(i). $(-4) \times (-5) \times (-8) \times (-10)$
(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
解題步驟
我們需要求出已知項的積。
解答
我們知道:
如果負因子的個數為偶數,則積為正數;如果負因子的個數為奇數,則積為負數。
(i)$(-4) \times (-5) \times (-8) \times (-10)$
有四個負數,因此積為正數。
$(-4) \times (-5) \times (-8) \times (-10) = (4\times 5\times 8\times 10)$
$= (20\times 80)$
$= 1600$。
因此,$(-4) \times (-5) \times (-8) \times (-10)$ 的積是 1600。
(ii)$(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
有五個負數,因此積為負數。
$(-6) \times (-5) \times (-7) \times (-2) \times (-3) = -(6\times 5\times 7\times 2\times 3)$
$= - 30\times 42$
$= -1260$
因此,$(-6) \times (-5) \times (-7) \times (-2) \times (-3)$ 的積是 $-1260$。
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP