在Go語言中實現克魯斯卡爾演算法


在本文中,我們將瞭解如何開發一個Go語言程式,藉助並查集演算法和優先佇列方法來實現克魯斯卡爾演算法。克魯斯卡爾演算法用於查詢圖的最小生成樹。

演算法

  • 步驟 1 − 首先,我們需要匯入fmt和sort包。然後建立名為Edge、graph和subset的結構體,併為其分配屬性。

  • 步驟 2 − 然後按邊的權重非遞減順序對圖的所有邊進行排序。

  • 步驟 3 − 建立一個不相交集資料結構,其中每個集合只包含一個頂點。

  • 步驟 4 − 對於排序後的圖中的每條邊。如果該邊連線兩個不相交集,則我們需要將其新增到最小生成樹中併合並這兩個集合。最後返回最小生成樹。

  • 步驟 5 − 現在,開始main()函式。在main()函式內部初始化一個圖併為其分配邊。進一步透過將邊作為引數傳遞給它來呼叫kruskals()函式。

  • 步驟 6 − 將函式獲得的結果儲存在一個變數中,並在螢幕上打印出來。

示例 1

在這個示例中,我們將編寫一個Go語言程式,使用並查集演算法來實現克魯斯卡爾演算法。

package main

import (
   "fmt"
   "sort"
)

type Edge struct {
   Src, Dest, Weight int
}

type Graph struct {
   Edges    []Edge
   Vertices int
}

type Subset struct {
   Parent int
   Rank   int
}

func find(subsets []Subset, i int) int {
   if subsets[i].Parent != i {
      subsets[i].Parent = find(subsets, subsets[i].Parent)
   }
   return subsets[i].Parent
}

func union(subsets []Subset, x, y int) {
   rootX := find(subsets, x)
   rootY := find(subsets, y)
   if subsets[rootX].Rank < subsets[rootY].Rank {
      subsets[rootX].Parent = rootY
   } else if subsets[rootX].Rank > subsets[rootY].Rank {
      subsets[rootY].Parent = rootX
   } else {
      subsets[rootY].Parent = rootX
      subsets[rootX].Rank++
   }
}

func kruskals(graph Graph) []Edge {
   sortedEdges := make([]Edge, len(graph.Edges))
   copy(sortedEdges, graph.Edges)
   sort.Slice(sortedEdges, func(i, j int) bool {
      return sortedEdges[i].Weight < sortedEdges[j].Weight
   })
   subsets := make([]Subset, graph.Vertices)
   for i := range subsets {
      subsets[i].Parent = i
      subsets[i].Rank = 0
   }
   result := make([]Edge, 0, graph.Vertices-1)
   for _, edge := range sortedEdges {
      srcRoot := find(subsets, edge.Src)
      destRoot := find(subsets, edge.Dest)
      if srcRoot != destRoot {
         result = append(result, edge)
         union(subsets, srcRoot, destRoot)
      }
   }
   return result
}

func main() {
   graph := Graph{
      Edges: []Edge{
         {0, 1, 10},
         {0, 2, 6},
         {0, 3, 5},
         {1, 3, 15},
         {2, 3, 4},
      },
      Vertices: 4,
   }
   fmt.Println("The given input is:", graph)
   fmt.Println()
   mst := kruskals(graph)
   fmt.Println("Minimum Spanning Tree:")
   for _, edge := range mst {
      fmt.Printf("(%d, %d) with weight %d\n", edge.Src, edge.Dest, edge.Weight)
   }
}

輸出

The given input is: {[{0 1 10} {0 2 6} {0 3 5} {1 3 15} {2 3 4}] 4}

Minimum Spanning Tree:
(2, 3) with weight 4
(0, 3) with weight 5
(0, 1) with weight 10

示例 2

在這個示例中,我們將編寫一個Go語言程式,使用優先佇列演算法來實現克魯斯卡爾演算法。

package main

import (
   "container/heap"
   "fmt"
)

type Edge struct {
   Src    int
   Dest   int
   Weight int
}

type Graph struct {
   Edges    []Edge
   Vertices int
}

type PriorityQueue []*Item

type Item struct {
   value    Edge
   priority int
   index    int
}

func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
   return pq[i].priority < pq[j].priority
}
func (pq PriorityQueue) Swap(i, j int) {
   pq[i], pq[j] = pq[j], pq[i]
   pq[i].index = i
   pq[j].index = j
}
func (pq *PriorityQueue) Push(x interface{}) {
   n := len(*pq)
   item := x.(*Item)
   item.index = n
   *pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() interface{} {
   old := *pq
   n := len(old)
   item := old[n-1]
   item.index = -1 // for safety
   *pq = old[0 : n-1]
   return item
}

func find(subsets []int, i int) int {
   if subsets[i] != i {
      subsets[i] = find(subsets, subsets[i])
   }
   return subsets[i]
}

func union(subsets []int, x int, y int) {
   xroot := find(subsets, x)
   yroot := find(subsets, y)
   subsets[yroot] = xroot
}

func kruskals(graph Graph) []Edge {
   pq := make(PriorityQueue, len(graph.Edges))
   for i, edge := range graph.Edges {
      pq[i] = &Item{
         value:    edge,
         priority: edge.Weight,
         index:    i,
      }
   }
   heap.Init(&pq)
   subsets := make([]int, graph.Vertices)
   for i := range subsets {
      subsets[i] = i
   }
   result := make([]Edge, 0, graph.Vertices-1)
   for pq.Len() > 0 {
      item := heap.Pop(&pq).(*Item)
      edge := item.value
      srcRoot := find(subsets, edge.Src)
      destRoot := find(subsets, edge.Dest)
      if srcRoot != destRoot {
         result = append(result, edge)
         
         // Update the parent node of the subset containing the src vertex
         union(subsets, edge.Src, edge.Dest) 
      }
   }
   return result
}

func main() {
   graph := Graph{
      Edges: []Edge{
         {0, 1, 10},
         {0, 2, 6},
         {0, 3, 5},
         {1, 3, 15},
         {2, 3, 4},
      },
      Vertices: 4,
   }
   fmt.Println("The given input is:", graph)
   mst := kruskals(graph)
   fmt.Println()
   fmt.Println("Minimum Spanning Tree:")
   for _, edge := range mst {
      fmt.Printf("(%d, %d) with weight %d\n", edge.Src, edge.Dest, edge.Weight)
   }
}

輸出

The given input is: {[{0 1 10} {0 2 6} {0 3 5} {1 3 15} {2 3 4}] 4}

Minimum Spanning Tree:
(2, 3) with weight 4
(0, 3) with weight 5
(0, 1) with weight 10

結論

我們已經成功編譯並執行了一個Go語言程式來實現克魯斯卡爾演算法以及示例。

更新於: 2023年4月5日

325 次瀏覽

開啟你的職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.