在C++中,如何找到滿足給定位置具有開括號的平衡表示式?
給定一個整數m和一個位置陣列'position[]' (1 <= length(position[]) <= 2m),找到可以構造長度為2m的正確括號表示式的數量,使得給定位置具有開括號。
注意:position[]陣列以(基於1的索引)[0, 1, 1, 0]的形式提供。這裡1表示應該設定開括號的位置。對於值為0的位置,可以設定開括號或閉括號。
示例
Input: n = 2, position[] = [1, 0, 1, 0] Output: 1 The only possibility is given below: [ ] [ ] In this case, recursive and recursion implementing memorization approach will be explained.
演算法
我們必須將給定陣列adj1(假設)中所有帶有開括號的位置標記為1。
我們執行一個遞迴迴圈,方法如下:
如果總括號數(開括號減去閉括號)小於零,則返回0。
如果索引達到m並且總括號數等於0,則存在解決方案並返回1,否則返回0。
如果索引值預先分配為1,則我們必須使用index+1遞迴呼叫函式,並將總括號數遞增。
否則,我們必須透過在該位置或索引處插入開括號並將總括號數遞增1,以及在該索引處插入閉括號並將總括號數遞減1,然後繼續到下一個索引直到m,來遞迴呼叫函式。
以下是上述演算法的遞迴解決方案:
示例
// C++ application of above method implementing Recursion #include <bits/stdc++.h> using namespace std; // Function to locate or find Number of proper bracket expressions int find(int index1, int openbrk1, int m, int adj1[]){ // If open-closed brackets less than 0 if (openbrk1 < 0) return 0; // If index reaches the end of expression if (index1 == m) { // If brackets are balanced if (openbrk1 == 0) return 1; else return 0; } // If the current index has assigned open bracket if (adj1[index1] == 1) { // We have to move forward increasing the // length of open brackets return find(index1 + 1, openbrk1 + 1, m, adj1); } else { // We have to move forward by inserting open as well // as closed brackets on that index return find(index1 + 1, openbrk1 + 1, m, adj1) + find(index1 + 1, openbrk1 - 1, m, adj1); } } // Driver Code int main(){ int m = 2; // Open brackets at position 1 int adj1[4] = { 1, 0, 0, 0 }; // Calling the find function to calculate the answer cout << find(0, 0, 2 * m, adj1) << endl; return 0; }
輸出
2
**記憶化方法 -**上述演算法的時間複雜度可以透過實現記憶化來改進或最佳化。
唯一需要執行的操作是實現一個數組來儲存先前迭代的結果,以便如果已經計算出值,則不需要多次遞迴呼叫同一個函式。
以下是所需的實現
// C++ application of above method implementing memorization #include <bits/stdc++.h> using namespace std; #define M 1000 // Function to locate or find Number of proper bracket expressions int find(int index1, int openbrk1, int m, int dp1[M][M], int adj1[]){ // If open-closed brackets is less than 0 if (openbrk1 < 0) return 0; // If index attains or reaches the end of expression if (index1 == m) { // If brackets are balanced if (openbrk1 == 0) return 1; else return 0; } // If already stored in dp1 if (dp1[index1][openbrk1] != -1) return dp1[index1][openbrk1]; // If the current index has assigned open bracket if (adj1[index1] == 1) { // We have to move forward increasing the length of open brackets dp1[index1][openbrk1] = find(index1 + 1, openbrk1 + 1, m, dp1, adj1); } else { // We have to move forward by inserting open as // well as closed brackets on that index dp1[index1][openbrk1] = find(index1 + 1, openbrk1 + 1, m, dp1, adj1) + find(index1 + 1, openbrk1 - 1, m, dp1, adj1); } // We have to return the answer return dp1[index1][openbrk1]; } // Driver Code int main(){ // dp1 array to precalculate the answer int dp1[M][M]; int m = 2; memset(dp1, -1, sizeof(dp1)); // Open brackets at position 1 int adj1[4] = { 1, 0, 0, 0 }; // We have to call the find function to compute the answer cout<< find(0, 0, 2 * m, dp1, adj1) << endl; return 0; }
輸出
2
時間複雜度:O(N2)
廣告